Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 521
1.
Cardiovasc Diabetol ; 23(1): 164, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724987

Dynamin-related protein 1 (Drp1) is a crucial regulator of mitochondrial dynamics, the overactivation of which can lead to cardiovascular disease. Multiple distinct posttranscriptional modifications of Drp1 have been reported, among which S-nitrosylation was recently introduced. However, the detailed regulatory mechanism of S-nitrosylation of Drp1 (SNO-Drp1) in cardiac microvascular dysfunction in diabetes remains elusive. The present study revealed that mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was consistently upregulated in diabetic cardiomyopathy (DCM) and promoted SNO-Drp1 in cardiac microvascular endothelial cells (CMECs), which in turn led to mitochondrial dysfunction and cardiac microvascular disorder. Further studies confirmed that MAP4K4 promoted SNO-Drp1 at human C644 (mouse C650) by inhibiting glutathione peroxidase 4 (GPX4) expression, through which MAP4K4 stimulated endothelial ferroptosis in diabetes. In contrast, inhibition of MAP4K4 via DMX-5804 significantly reduced endothelial ferroptosis, alleviated cardiac microvascular dysfunction and improved cardiac dysfunction in db/db mice by reducing SNO-Drp1. In parallel, the C650A mutation in mice abolished SNO-Drp1 and the role of Drp1 in promoting cardiac microvascular disorder and cardiac dysfunction. In conclusion, our findings demonstrate that MAP4K4 plays an important role in endothelial dysfunction in DCM and reveal that SNO-Drp1 and ferroptosis activation may act as downstream targets, representing potential therapeutic targets for DCM.


Diabetic Cardiomyopathies , Dynamins , Endothelial Cells , Mice, Inbred C57BL , Signal Transduction , Animals , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/pathology , Diabetic Cardiomyopathies/enzymology , Diabetic Cardiomyopathies/etiology , Humans , Dynamins/metabolism , Dynamins/genetics , Male , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelial Cells/enzymology , Endothelial Cells/drug effects , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Ferroptosis/drug effects , Disease Models, Animal , Cells, Cultured , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondria, Heart/enzymology , Mice , Protein Processing, Post-Translational , Coronary Circulation , Intracellular Signaling Peptides and Proteins
2.
Sci Total Environ ; : 173040, 2024 May 08.
Article En | MEDLINE | ID: mdl-38729374

China suffers from severe surface water pollution. Health impact assessment could provide a novel and quantifiable metric for the health burden attributed to surface water pollution. This study establishes a health impact assessment method for surface water pollution based on classic frameworks, integrating the multi-pollutant city water quality index (CWQI), informative epidemiological findings, and benchmark public health information. A relative risk level assignment approach is proposed based on the CWQI, innovatively addressing the challenge in surface water-human exposure risk assessment. A case study assesses the surface water pollution-related health impact in 336 Chinese cities. The results show (1) between 2015 and 2022, total health impact decreased from 3980.42 thousand disability-adjusted life years (DALYs) (95 % Confidence Interval: 3242.67-4339.29) to 3260.10 thousand DALYs (95 % CI: 2475.88-3641.35), measured by total cancer. (2) The annual average health impacts of oesophageal, stomach, colorectal, gallbladder, and pancreatic cancers added up to 2621.20 thousand DALYs (95 % CI: 2095.58-3091.10), revealing the significant health impact of surface water pollution on digestive cancer. (3) In 2022, health impacts in the Beijing-Tianjin-Hebei and surroundings, the Yangtze River Delta, and the middle reaches of the Yangtze River added up to 1893.06 thousand DALYs (95 % CI: 1471.82-2097.88), showing a regional aggregating trend. (4) Surface water pollution control has been the primary driving factor to health impact improvement, contributing -3.49 % to the health impact change from 2015 to 2022. It is the first city-level health impact map for China's surface water pollution. The methods and findings will support the water management policymaking in China and other countries suffering from water pollution.

3.
Sensors (Basel) ; 24(7)2024 Apr 07.
Article En | MEDLINE | ID: mdl-38610551

As an indispensable component of coal-fired power plants, boilers play a crucial role in converting water into high-pressure steam. The oxygen content in the flue gas is a crucial indicator, which indicates the state of combustion within the boiler. The oxygen content not only affects the thermal efficiency of the boiler and the energy utilization of the generator unit, but also has adverse impacts on the environment. Therefore, accurate measurement of the flue gas's oxygen content is of paramount importance in enhancing the energy utilization efficiency of coal-fired power plants and reducing the emissions of waste gas and pollutants. This study proposes a prediction model for the oxygen content in the flue gas that combines the whale optimization algorithm (WOA) and long short-term memory (LSTM) networks. Among them, the whale optimization algorithm (WOA) was used to optimize the learning rate, the number of hidden layers, and the regularization coefficients of the long short-term memory (LSTM). The data used in this study were obtained from a 350 MW power generation unit in a coal-fired power plant to validate the practicality and effectiveness of the proposed hybrid model. The simulation results demonstrated that the whale optimization algorithm-long short-term memory (WOA-LSTM) model achieved an MAE of 0.16493, an RMSE of 0.12712, an MAPE of 2.2254%, and an R2 value of 0.98664. The whale optimization algorithm-long short-term memory (WOA-LSTM) model demonstrated enhancements in accuracy compared with the least squares support vector machine (LSSVM), long short-term memory (LSTM), particle swarm optimization-least squares support vector machine (PSO-LSSVM), and particle swarm optimization-long short-term memory (PSO-LSTM), with improvements of 4.93%, 4.03%, 1.35%, and 0.49%, respectively. These results indicated that the proposed soft sensor model exhibited more accurate performance, which can meet practical requirements of coal-fired power plants.

4.
Article En | MEDLINE | ID: mdl-38655615

SLC45A1 encodes a glucose transporter protein highly expressed in the brain. Mutations in SLC45A1 may lead to neurological diseases and developmental disorders, but its exact role is poorly understood. DNA G-quadruplexes (DNA G4s) are stable structures formed by four guanine bases and play a role in gene regulation and genomic stability. Changes in DNA G4s may affect brain development and function. The mechanism linking alterations in DNA G-quadruplex structures to SLC45A1 pathogenicity remains unknown. In this study, we identify a functional DNA G-quadruplex and its key binding site on SLC45A1 (NM_001080397.3: exon 2: c.449 G>A: p.R150K). This variant results in the upregulation of mRNA and protein expression, which may lead to intellectual developmental disorder with neuropsychiatric features. Mechanistically, the mutation is found to disrupt DNA G-quadruplex structures on SLC45A1, leading to transcriptional enhancement and a gain-of-function mutation, which further causes increased expression and function of the SLC45A1 protein. The identification of the functional DNA G-quadruplex and its effects on DNA G4s may provide new insights into the genetic basis of SLC45A1 pathogenicity and highlight the importance of DNA G4s of SLC45A1 in regulating gene expression and brain development.

6.
Proc Natl Acad Sci U S A ; 121(16): e2315541121, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38598341

Ferroptosis is an iron-dependent type of regulated cell death resulting from extensive lipid peroxidation and plays a critical role in various physiological and pathological processes. However, the regulatory mechanisms for ferroptosis sensitivity remain incompletely understood. Here, we report that homozygous deletion of Usp8 (ubiquitin-specific protease 8) in intestinal epithelial cells (IECs) leads to architectural changes in the colonic epithelium and shortens mouse lifespan accompanied by increased IEC death and signs of lipid peroxidation. However, mice with heterozygous deletion of Usp8 in IECs display normal phenotype and become resistant to azoxymethane/dextran sodium sulfate-induced colorectal tumorigenesis. Mechanistically, USP8 interacts with and deubiquitinates glutathione peroxidase 4 (GPX4), leading to GPX4 stabilization. Thus, USP8 inhibition destabilizes GPX4 and sensitizes cancer cells to ferroptosis in vitro. Notably, USP8 inhibition in combination with ferroptosis inducers retards tumor growth and enhances CD8+ T cell infiltration, which potentiates tumor response to anti-PD-1 immunotherapy in vivo. These findings uncover that USP8 counteracts ferroptosis by stabilizing GPX4 and highlight targeting USP8 as a potential therapeutic strategy to boost ferroptosis for enhancing cancer immunotherapy.


Ferroptosis , Neoplasms , Mice , Animals , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Ferroptosis/genetics , Homozygote , Sequence Deletion , Lipid Peroxidation , Homeostasis , Neoplasms/genetics , Neoplasms/therapy , Immunotherapy
7.
Inorg Chem ; 63(15): 7063-7070, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38567746

2D nanodendrites (NDs) and nanosheets (NSs) have been regarded as efficient nanocatalysts for enhancing the electrocatalytic performance due to their low coordinated sites and abundant electrocatalytic centers. Nevertheless, it remains challenging to construct advanced NDs and NSs in a single reaction system. Herein, by tuning the volume ratios of mixed solvents, the reduction and diffusion rate of Sn2+ on Pd NSs template was rationally controlled to prepare PdSn NDs and PdSn NSs. Ascribed to the open 2D nanostructure, high specific surface area, and robust synergistic effect, the as-prepared PdSn NDs and PdSn NSs exhibited distinguished electrocatalytic activities for ethylene glycol oxidation reaction (EGOR) and ethanol oxidation reaction (EOR), as well as commendable electrocatalytic durability, which were far superior to the Pd NSs and commercial Pd/C. In addition, the PdSn NDs exhibited enhanced reaction kinetics because the characteristic branch structure exposed a high density of active sites. This work may provide significant guidance for preparing excellent nanocatalysts with various morphological features by simply optimizing the content of the coexisting solvents.

8.
Curr Med Chem ; 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38685772

BACKGROUND: Recent studies have unveiled disulfidptosis as a phenomenon intimately associated with cellular damage, heralding new avenues for exploring tumor cell dynamics. We aimed to explore the impact of disulfide cell death on the tumor immune microenvironment and immunotherapy in lung adenocarcinoma (LUAD). METHODS: We initially utilized pan-cancer transcriptomics to explore the expression, prognosis, and mutation status of genes related to disulfidptosis. Using the LUAD multi- -omics cohorts in the TCGA database, we explore the molecular characteristics of subtypes related to disulfidptosis. Employing various machine learning algorithms, we construct a robust prognostic model to predict immune therapy responses and explore the model's impact on the tumor microenvironment through single-cell transcriptome data. Finally, the biological functions of genes related to the prognostic model are verified through laboratory experiments. RESULTS: Genes related to disulfidptosis exhibit high expression and significant prognostic value in various cancers, including LUAD. Two disulfidptosis subtypes with distinct prognoses and molecular characteristics have been identified, leading to the development of a robust DSRS prognostic model, where a lower risk score correlates with a higher response rate to immunotherapy and a better patient prognosis. NAPSA, a critical gene in the risk model, was found to inhibit the proliferation and migration of LUAD cells. CONCLUSION: Our research introduces an innovative prognostic risk model predicated upon disulfidptosis genes for patients afflicted with Lung Adenocarcinoma (LUAD). This model proficiently forecasts the survival rates and therapeutic outcomes for LUAD patients, thereby delineating the high-risk population with distinctive immune cell infiltration and a state of immunosuppression. Furthermore, NAPSA can inhibit the proliferation and invasion capabilities of LUAD cells, thereby identifying new molecules for clinical targeted therapy.

9.
Article En | MEDLINE | ID: mdl-38607749

BACKGROUND: After undergoing fibula-free flap harvest, patients may experience complications such as ankle instability. It remains unclear whether these patients have deficits of proprioception, and the recovery process is also uncertain. OBJECTIVE: This study aimed to objectively evaluate proprioception on the donor and normal side of surgical patients during long-term follow-up using the Pro-kin system. METHODS: This study enrolled 36 patients who underwent reconstruction of the head and neck using osseous free flaps harvested from the fibula. Each patient underwent pre-operative evaluations and was subsequently evaluated at postoperative months 1, 3, 6, and 12. The study assessed the proprioceptive evaluation of the lower limbs, muscle function, range of motion of the ankle, and donor side complications. RESULTS: On the donor side, the average trace error (ATE) at postoperative month 1 was significantly higher than pre-operation, postoperative months 6 and 12 (P< 0.05). The test execution time (TTE) at postoperative month 1 was significantly increased by 9.875s compared to the pre-operative levels (P= 0.012, 95% confidence interval [CI] 4: 1.877-17.873) and by 11.583s compared to postoperative month 12 (P= 0.007, 95% CI: 2.858-20.309). The reduction in range of motion of ankle dorsiflexion was most pronounced at postoperative month 1, exhibiting an 11.25∘ decrease compared to pre-operative levels (P< 0.001, 95% CI: 6.304-16.16). Although the range of motion of ankle dorsiflexion gradually improved over time at postoperative months 3, 6, and 12, it remained lower than pre-operative levels (P< 0.05). CONCLUSION: The study revealed that the patients exhibited proprioceptive disturbances in both lower limbs at postoperative month 1. The proprioceptive function gradually improved over time, with a gradual decrease in donor site complications.

10.
PLoS One ; 19(3): e0298443, 2024.
Article En | MEDLINE | ID: mdl-38512926

BACKGROUND: Increasing evidence suggests that alterations in gut microbiota are associated with a variety of skin diseases. However, whether this association reflects a causal relationship remains unknown. We aimed to reveal the causal relationship between gut microbiota and skin diseases, including psoriasis, atopic dermatitis, acne, and lichen planus. METHODS: We obtained full genetic association summary data for gut microbiota, psoriasis, atopic dermatitis, acne, and lichen planus from public databases and used three methods, mainly inverse variance weighting, to analyze the causal relationships between gut microbiota and these skin diseases using bidirectional Mendelian randomization, as well as sensitivity and stability analysis of the results using multiple methods. RESULTS: The results showed that there were five associated genera in the psoriasis group, seven associated genera were obtained in the atopic dermatitis group, a total of ten associated genera in the acne group, and four associated genera in the lichen planus group. The results corrected for false discovery rate showed that Eubacteriumfissicatenagroup (P = 2.20E-04, OR = 1.24, 95%CI:1.11-1.40) and psoriasis still showed a causal relationship. In contrast, in the reverse Mendelian randomization results, there was no evidence of an association between these skin diseases and gut microbiota. CONCLUSION: We demonstrated a causal relationship between gut microbiota and immune skin diseases and provide a new therapeutic perspective for the study of immune diseases: targeted modulation of dysregulation of specific bacterial taxa to prevent and treat psoriasis, atopic dermatitis, acne, and lichen planus.


Acne Vulgaris , Dermatitis, Atopic , Gastrointestinal Microbiome , Lichen Planus , Psoriasis , Skin Diseases , Humans , Dermatitis, Atopic/genetics , Gastrointestinal Microbiome/genetics , Mendelian Randomization Analysis , Skin Diseases/genetics , Psoriasis/genetics , Genome-Wide Association Study
11.
Sci Adv ; 10(13): eadi9035, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38552007

The pharyngeal endoderm, an innovation of deuterostome ancestors, contributes to pharyngeal development by influencing the patterning and differentiation of pharyngeal structures in vertebrates; however, the evolutionary origin of the pharyngeal organs in vertebrates is largely unknown. The endostyle, a distinct pharyngeal organ exclusively present in basal chordates, represents a good model for understanding pharyngeal organ origins. Using Stereo-seq and single-cell RNA sequencing, we constructed aspatially resolved single-cell atlas for the endostyle of the ascidian Styela clava. We determined the cell composition of the hemolymphoid region, which illuminates a mixed ancestral structure for the blood and lymphoid system. In addition, we discovered a cluster of hair cell-like cells in zone 3, which has transcriptomic similarity with the hair cells of the vertebrate acoustico-lateralis system. These findings reshape our understanding of the pharynx of the basal chordate and provide insights into the evolutionary origin of multiplexed pharyngeal organs.


Urochordata , Animals , Urochordata/genetics , Pharynx , Vertebrates , Biological Evolution , Cell Differentiation
12.
Schizophrenia (Heidelb) ; 10(1): 31, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38443399

Schizophrenia (SCZ), a highly heritable mental disorder, is characterized by cognitive impairment, yet the extent of the shared genetic basis between schizophrenia and cognitive performance (CP) remains poorly understood. Therefore, we aimed to explore the polygenic overlap between SCZ and CP. Specifically, the bivariate causal mixture model (MiXeR) was employed to estimate the extent of genetic overlap between SCZ (n = 130,644) and CP (n = 257,841), and conjunctional false discovery rate (conjFDR) approach was used to identify shared genetic loci. Subsequently, functional annotation and enrichment analysis were carried out on the identified genomic loci. The MiXeR analyses revealed that 9.6 K genetic variants are associated with SCZ and 10.9 K genetic variants for CP, of which 9.5 K variants are shared between these two traits (Dice coefficient = 92.8%). By employing conjFDR, 236 loci were identified jointly associated with SCZ and CP, of which 139 were novel for the two traits. Within these shared loci, 60 exhibited consistent effect directions, while 176 had opposite effect directions. Functional annotation analysis indicated that the shared genetic loci were mainly located in intronic and intergenic regions, and were found to be involved in relevant biological processes such as nervous system development, multicellular organism development, and generation of neurons. Together, our findings provide insights into the shared genetic architecture between SCZ and CP, suggesting common pathways and mechanisms contributing to both traits.

13.
Appl Environ Microbiol ; 90(4): e0174323, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38470180

Soil and rhizosphere bacteria act as a rich source of secondary metabolites, effectively fighting against a diverse array of pathogens. Certain Pseudomonas species harbor biosynthetic gene clusters for producing both pyoluteorin and 2,4-diacetylphloroglucinol (2,4-DAPG), which are polyketides that exhibit highly similar antimicrobial spectrum against bacteria and fungi or oomycete. A complex cross talk exists between pyoluteorin and 2,4-DAPG biosynthesis, and production of 2,4-DAPG was strongly repressed by pyoluteorin, yet the underlying mechanism is still elusive. In this study, we find that the TetR family transcription factor PhlH is involved in the cross talk between pyoluteorin and 2,4-DAPG biosynthesis. PhlH binds to a palindromic sequence within the promoter of phlG (PphlG), which encodes a C-C bond hydrolase responsible for degrading 2,4-DAPG. As a signaling molecule, pyoluteorin disrupts the PhlH-PphlG complex by binding to PhlH, leading to decreased levels of 2,4-DAPG. Proteomics data suggest that pyoluteorin regulates multiple physiological processes including fatty acid biosynthesis and transportation of taurine, siderophore, and amino acids. Our work not only reveals a novel mechanism of cross talk between pyoluteorin and 2,4-DAPG biosynthesis, but also highlights pyoluteorin's role as a messenger in the complex communication network of Pseudomonas.IMPORTANCEAntibiosis serves as a crucial defense mechanism for microbes against invasive bacteria and resource competition. These bacteria typically orchestrate the production of multiple antibiotics in a coordinated fashion, wherein the synthesis of one antibiotic inhibits the generation of another. This strategic coordination allows the bacterium to focus its resources on producing the most advantageous antibiotic under specific circumstances. However, the underlying mechanisms of distinct antibiotic production in bacterial cells remain largely elusive. In this study, we reveal that the TetR family transcription factor PhlH detects the secondary metabolite pyoluteorin and mediates the cross talk between pyoluteorin and 2,4-DAPG biosynthesis in the biocontrol strain Pseudomonas protegens Pf-5. These findings hold promise for future research, potentially informing the manipulation of these systems to enhance the effectiveness of biocontrol agents.


Phenols , Phloroglucinol/analogs & derivatives , Pseudomonas fluorescens , Pyrroles , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Bacterial , Pseudomonas/metabolism , Anti-Bacterial Agents/pharmacology , Pseudomonas fluorescens/genetics
14.
Schizophrenia (Heidelb) ; 10(1): 35, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38490990

Schizophrenia, a multifaceted mental disorder characterized by disturbances in thought, perception, and emotion, has been extensively investigated through resting-state fMRI, uncovering changes in spontaneous brain activity among those affected. However, a bibliometric examination regarding publication trends in resting-state fMRI studies related to schizophrenia is lacking. This study obtained relevant publications from the Web of Science Core Collection spanning the period from 1998 to 2022. Data extracted from these publications included information on countries/regions, institutions, authors, journals, and keywords. The collected data underwent analysis and visualization using VOSviewer software. The primary analyses included examination of international and institutional collaborations, authorship patterns, co-citation analyses of authors and journals, as well as exploration of keyword co-occurrence and temporal trend networks. A total of 859 publications were retrieved, indicating an overall growth trend from 1998 to 2022. China and the United States emerged as the leading contributors in both publication outputs and citations, with Central South University and the University of New Mexico being identified as the most productive institutions. Vince D. Calhoun had the highest number of publications and citation counts, while Karl J. Friston was recognized as the most influential author based on co-citations. Key journals such as Neuroimage, Schizophrenia Research, Schizophrenia Bulletin, and Biological Psychiatry played pivotal roles in advancing this field. Recent popular keywords included support vector machine, antipsychotic medication, transcranial magnetic stimulation, and related terms. This study systematically synthesizes the historical development, current status, and future trends in resting-state fMRI research in schizophrenia, offering valuable insights for future research directions.

15.
Cell Death Dis ; 15(3): 193, 2024 Mar 07.
Article En | MEDLINE | ID: mdl-38453910

Triggering receptor expressed on myeloid cells-2 (TREM2) has been implicated in susceptibility to neurodegenerative disease. Schwann cells (SCs), the predominant glial cell type in the peripheral nervous system (PNS), play a crucial role in myelination, providing trophic support for neurons and nerve regeneration. However, the function of TREM2 in SCs has not been fully elucidated. Here, we found that TREM2 is expressed in SCs but not in neurons in the PNS. TREM2 deficiency leads to disruption of glycolytic flux and oxidative metabolism in SCs, impairing cell proliferation. The energy crisis caused by TREM2 deficiency triggers mitochondrial damage and autophagy by activating AMPK and impairing PI3K-AKT-mTOR signaling. Combined metabolomic analysis demonstrated that energic substrates and energy metabolic pathways were significantly impaired in TREM2-deficient SCs. Moreover, TREM2 deficiency impairs energy metabolism and axonal growth in sciatic nerve, accompanied by exacerbation of neurological deficits and suppression of nerve regeneration in a mouse model of acute motor axonal neuropathy. These results indicate that TREM2 is a critical regulator of energy metabolism in SCs and exerts neuroprotective effects on peripheral neuropathy. TREM2 deficiency impairs glycolysis and oxidative metabolism in Schwann cells, resulting in compromised cell proliferation. The energy crisis caused by TREM2 deficiency induces mitochondrial damage and autophagy by activating AMPK and impairing PI3K-AKT-mTOR signaling. Moreover, TREM2 deficiency disrupts the energy metabolism of the sciatic nerve and impairs support for axonal regeneration, accompanied by exacerbation of neurological deficits and suppression of nerve regeneration in a mouse model of acute motor axonal neuropathy (by FigDraw).


Neurodegenerative Diseases , Proto-Oncogene Proteins c-akt , Animals , Mice , AMP-Activated Protein Kinases/metabolism , Energy Metabolism , Nerve Regeneration/physiology , Neurodegenerative Diseases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Schwann Cells/metabolism , TOR Serine-Threonine Kinases/metabolism
16.
Heliyon ; 10(5): e27153, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38455567

Hepatocellular carcinoma (HCC) is associated with high morbidity and mortality globally. tRNA-derived small RNAs (tsRNAs) have emerged as potential targets for cancer treatment. However, the specific impact of tsRNAs on HCC remains undiscovered. In this study, we aimed to investigate the biological significance of tsRNAs in HCC. First, we screened the differentially expressed tsRNAs in HCC tissues and normal tissues adjacent to the tumor (NAT) using high-throughput sequencing and the results showed that tRF-39-8HM2OSRNLNKSEKH9 was more highly expressed in HCC tissues than NATs. Agarose gel electrophoresis (AGE), nuclear-cytoplasmic separation assays and fluorescence in situ hybridization (FISH) were employed to assess the characterization of tRF-39-8HM2OSRNLNKSEKH9. The relationship between the expression of tRF-39-8HM2OSRNLNKSEKH9 and clinicopathological parameters was evaluated and we found that it was positively associated with tumor size. The cell counting kit-8 (CCK8) assay, colony formation assay and EdU staining assay were employed to investigate the role of tRF-39-8HM2OSRNLNKSEKH9 in the proliferation of HCC cells. Additionally, transwell assays demonstrated that overexpression of tRF-39-8HM2OSRNLNKSEKH9 could accelerate cell migration capability. Taken together, tRF-39-8HM2OSRNLNKSEKH9 was highly expressed in HCC cells, serum and tissues, and it may play an oncogenic role in HCC cells through interacting with downstream mRNA targets.

17.
Cell Commun Signal ; 22(1): 93, 2024 02 01.
Article En | MEDLINE | ID: mdl-38302971

BACKGROUND: Physical exercise directly stretching the peripheral nerve promotes nerve regeneration; however, its action mechanism remains elusive. Our present study aimed to investigate the effects of mechanosensitive channel of large conductance (MscL) activated by mechanical stretching on the cultured Schwann cells (SCs) and explore the possible mechanism. METHODS: Primary SCs from neonatal mice at 3-5 days of age were derived and transfected with the lentivirus vector expressing a mutant version of MscL, MscL-G22S. We first detected the cell viability and calcium ion (Ca2+) influx in the MscL-G22S-expressing SCs with low-intensity mechanical stretching and the controls. Proteomic and energy metabolomics analyses were performed to investigate the comprehensive effects of MscL-G22S activation on SCs. Measurement of glycolysis- and oxidative phosphorylation-related molecules and ATP production were respectively performed to further validate the effects of MscL-G22S activation on SCs. Finally, the roles of phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway in the mechanism of energy metabolism modulation of SCs by MscL-G22S activation was investigated. RESULTS: Mechanical stretching-induced MscL-G22S activation significantly increased the cell viability and Ca2+ influx into the SCs. Both the proteomic and targeted energy metabolomics analysis indicated the upregulation of energy metabolism as the main action mechanism of MscL-G22S-activation on SCs. MscL-G22S-activated SCs showed significant upregulation of glycolysis and oxidative phosphorylation when SCs with stretching alone had only mild upregulation of energy metabolism than those without stimuli. MscL-G22S activation caused significant phosphorylation of the PI3K/AKT/mTOR signaling pathway and upregulation of HIF-1α/c-Myc. Inhibition of PI3K abolished the MscL-G22S activation-induced upregulation of HIF-1α/c-Myc signaling in SCs and reduced the levels of glycolysis- and oxidative phosphorylation-related substrates and mitochondrial activity. CONCLUSION: Mechanical stretching activates MscL-G22S to significantly promote the energy metabolism of SCs and the production of energic substrates, which may be applied to enhance nerve regeneration via the glia-axonal metabolic coupling.


Proto-Oncogene Proteins c-akt , Signal Transduction , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Up-Regulation , Proteomics , Proto-Oncogene Proteins c-myc/metabolism , Glycolysis , Schwann Cells/metabolism , Phosphatidylinositol 3-Kinase/metabolism , TOR Serine-Threonine Kinases/metabolism , Oxidative Stress , Mammals/metabolism
18.
Curr Med Res Opin ; 40(4): 575-582, 2024 04.
Article En | MEDLINE | ID: mdl-38385550

BACKGROUND: Accurate identification of delirium in sepsis patients is crucial for guiding clinical diagnosis and treatment. However, there are no accurate biomarkers and indicators at present. We aimed to identify which combinations of cognitive impairment-related biomarkers and other easily accessible assessments best predict delirium in sepsis patients. METHODS: One hundred and one sepsis patients were enrolled in a prospective study cohort. S100B, NSE, and BNIP3 L biomarkers were detected in plasma and cerebrospinal fluid and patients' optic nerve sheath diameter (ONSD). The optimal biomarkers identified by Logistic regression are combined with other factors such as ONSD to filter out the perfect model to predict delirium in sepsis patients through Logistic regression, Naïve Bayes, decision tree, and neural network models. MAIN RESULTS: Among all biomarkers, compared with BNIP3 L (AUC = .706, 95% CI = .597-.815) and NSE (AUC = .711, 95% CI = .609-.813) in cerebrospinal fluid, plasma S100B (AUC = .729, 95% CI = .626-.832) had the best discrimination performance for delirium in sepsis patients. Logistic regression analysis showed that the combination of cerebrospinal fluid BNIP3 L with plasma S100B, ONSD, neutrophils, and age provided the best discrimination to cognitive impairment in sepsis patients (accuracy = .901, specificity = .923, sensitivity = .911), which was better than Naïve Bayes, decision tree, and neural network models. Neutrophils, ONSD, and cerebrospinal fluid BNIP3 L were consistently the major contributors in a few models. CONCLUSIONS: The logistic regression showed that the combination model was strongly correlated with cognitive dysfunction in sepsis patients.


Delirium , Sepsis-Associated Encephalopathy , Sepsis , Humans , Sepsis-Associated Encephalopathy/diagnosis , Prospective Studies , Prognosis , Bayes Theorem , Biomarkers , Sepsis/complications , Sepsis/diagnosis , Membrane Proteins , Proto-Oncogene Proteins , S100 Calcium Binding Protein beta Subunit
19.
Ecotoxicol Environ Saf ; 272: 116020, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38306816

Cadmium is a persistent heavy metal commonly found in aquatic ecosystems and has a strong toxic effect on organisms. The sensitivity of phytoplankton to environmental changes and its role as an indicator of aquatic ecosystem health have been well-established. However, the mechanisms by which phytoplankton respond to cadmium remain incompletely understood. In this study, we chose the typical planktonic diatom Cyclotella meneghiniana Kützing, by integrating physiological-biochemical data and transcriptome analysis, to reveal the molecular mechanisms of C. meneghiniana responing to cadmium. Under cadmium stress, the cell density and chlorophyll-a content of C. meneghiniana significantly decreased, while MDA content and SOD activity gradually increased. At 72 h of cadmium stress, we found that at this time point, cell abundance and physiological variation were very significant, therefore we selected 72 h for subsequent analysis. To better understand the cadmium stress response mechanisms of C. meneghiniana, a de novo transcriptome method was used to analyse C. meneghiniana under cadmium stress for 72 h, and 1704 (M vs. CK) and 4788 (H vs. CK) differentially expressed genes were found. Our results showed that the changes in gene expression were closely correlated to the physiological-biochemical changes. Although cadmium stress could promote the nitrogen metabolism pathway, ROS scavenging system, and photosynthesis. While, C. meneghiniana under medium and high concentrations of cadmium can also limit various intracellular metabolic pathways, such as the MAPK pathway and phosphatidylinositol metabolic pathway, and the degree of inhibition increases with the increase of stress concentration. In present study, the complete molecular mechanism of the planktonic diatom response to cadmium has been established, which provided important information for further studies on heavy metal pollutants and the multiple functional genes responsible for cadmium sensitivity and tolerance in planktonic diatoms.


Cadmium , Diatoms , Cadmium/metabolism , Ecosystem , Transcriptome , Photosynthesis , Plankton , Phytoplankton
20.
Sci Total Environ ; 921: 171094, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38387575

Integrated management and synergistic improvement of the water system is a topic of widespread concern. This study innovatively integrates three functions of quality assessment, synergy evaluation, and driving influence determination to establish a systematic framework assessing water system harmony. A case study of 336 Chinese cities is further performed by combining multi-scale and multi-source datasets. The results show China's water system quality has improved from 2015 to 2022. Development in the water resource, environment, and ecology subsystems have been differentiated, with 0.05 %, 4.33 %, and -1.64 % changes, respectively. The degradation of water ecology and the weak synergy with the other two subsystems have limited China's water system harmony. Water environment improvement played a contributive role in improving the water system quality. The contribution structure of water resources, environment, and ecology has shifted towards equilibrium in recent years. We found and highlighted the north-south differentiation of water system harmony in Chinese cities. The Beijing-Tianjin-Hebei and its surroundings, the Yangtze River Delta, and the middle reaches of the Yangtze River are identified as priority regions for water system harmony improvement. The primary contribution of this study is to propose an assessing concept of water resource-environment-ecology system harmony, establish well-structured assessment methods, and integrate the multiple data sources. The novel methods and findings, including the indicator system, application of data mining and decomposing methods, and the city-level water system harmony map, deconstruct and quantify the complex and diverse water system, supporting clearer and more efficient water management policymaking.

...